

Practical Applications of Green Engineering Solvent Recovery/Reuse in Pharmaceutical Processes

> Nhan Nguyen / Kathy Davey / Sharon Austin Office of Pollution Prevention and Toxics

> > US EPA

Expanding Business Value Through Pollution Prevention & Sustainable Practices May 19, 2010 San Juan, Puerto Rico

Outline of Presentation Who are we? Green Engineering Pharma Project Goals, Status and Next Steps GSK Life Cycle Modules and Solvent Decision Support Tool (DST) Decision Support Tool (DST) Tool framework, data input, and LCI / Business Models Solvent, Process and Market Data Community data / EJ impacts Case studies (with environmental and economic benefits)

Who are we?

- Office of Pollution Prevention and Toxics (OPPT)
 - Toxic Substances Control Act (TSCA) and Pollution Prevention Act (PPA)
 - Multimedia
 - Serves as a gatekeeper/guardian to ensure chemical safety
 - Promotes environmental stewardship and sustainability
 - via collaborative programs (e.g. GC, GE, DfE) and educational activities
 - Develops tools and makes information available
 - Collaborates international to address chemicals
 - Consists of five divisions including Economics Exposure & Technology Division (EETD) and Pollution Prevention Division (PPD)
 - GE activities managed by the Chemical Engineering Branch (CEB) of EETD

Project Overview

- Targets initially pharmaceutical processes, where large amounts of toxic solvents are used per mass of final product
- Large contributor to environmental footprint is disposal (incineration / cement kilns) of solvents.

4

Project Goals

- Reduce environmental footprint and report measured results
 - Pounds of toxic materials reduced
 - Metric tons of CO2 and BTUs reduced
 - Pounds of air, water and solid waste emissions reduced
 - Gallons of water and
 - \$ saved.
- Facilitate information exchange on approaches and practices to rest of pharmaceutical sites and other chemical processes

5

6

Status of Project

- Developed a Solvent Decision Support Tool (DST)
 - GSK Life Cycle module
 - Estimates energy, GHG and emissions to various media
 - Model to estimate savings corresponding to these reductions
- Identified approaches and practices to recover/reuse solvents
- Developed business case studies using available data collected
- Working closely with the regions and ORCR

Next Steps

• Short-Term

- Work with interested pharmaceutical plants in the regions (e.g. Region 2)
- Pilot the approaches and practices
- Apply Solvent Decision Tool using plant-specific data.

• Long-Term

- Move upstream of the process (e.g. reaction, separation)
- Stewardship initiative for the broader pharmaceutical industry
- User-friendly tool for broader use by the Regions and industry

7

– Expand to other chemical processes

Solvent Data – Mass & Carbon Balance							
Solvent Data: T Mass Kg (Kg/Moles) Kg Carbon Content Carbons (# of carbons Carbon) Water Content Water Content	WO VARIAB I in -> Kg ou Irbon in → Ca ater in -> Wa	LES: How t (mass ba arbon out (ter out	much Carl nlance) carbon ba	bon and F nlance)	low mud	ch Water	
Solvent	Molecular Weight	Chemical Formula	# of Carbons	% Carbon	% Water	Kg in 5000 gallons	
Methanol	32	CH ₄ O	1	37%	50%	7,481	
Tetrahydrofuran 72		C4H ₈ O	4	67%	25%	12,642	
Toluene	92	C7 H ₈	7	91%	0%	16,477	
What do you do now? (dispose as waste – baseline & worst case) Process change to extend solvent life? DST provides metrics for each process change. (lbs, GHG, energy, \$\$)							

Solvent Recovery Module Manufacturing Emissions A reused solvent replaces solvent that would have otherwise been purchased. A reused solvent thus avoids disposal and manufacturing emissions. Highly processed chemicals, such as THF, have higher manufacturing emissions as compared to basic building block chemicals, such as toluene. Estimations of manufacturing emissions (cradle to gate) are similar from different sources. (GSK / Zurich Institute Paper) Currently have manufacturing emissions for all 33 F solvents.

Solvent Recovery Module								
	Distillation E	missions	٨	lanufactu	ring Emissi	ons		
	MMBTU	MCO2eq		MMBT	U MCO2e	eq		
	10.4	1.1	Toluene	96	14.4			
	10	1.0	THF 25%	1135	153			
	12.2	1.3	THF 5%	1390	188			
THF 5% 12,009 kg THF 16,013 kg THF Isotainer 843 kg water 3160 kg THF & 843 kg water 16,856 kg total Bottoms (Incineration)								
	Stea			MMBTU	MCO2eq			
					28.2			
THF 25%	THF 25%	112	18.3					
12,642 kg THF			THF 5%	10	19.8			
4.214 kg water 16,856 kg total 30								

Use / Reuse – Some of the toluene captured could be put directly back onto the market without any distillation / reclamation. Use / reuse activities include filtering, where a substance can be lightly processed and reused for its original intention. (amanda will cover later)

Though recognized limited markets, the returns are attractive enough to seek out these opportunities.

Toluene Business Model - Benefits Table Worksheet								
Toluene 36,192 Recovered: \$0.30 SPEC: \$0.40 / lb	lbs (5000 G a / lb	allons)						
	Fuel Baseline	- Manifest Primary Distill Recovered	Houston - Bill of La Primary Distill Recovered \$0.30	ading (BOL) Prim/Secondary Distill Recovered	Houston - Bill of L Prim/Sec Distill SPEC \$0.40	ading (BOL) Prim/Sec Distill SPEC		
LOGISTICS \$/lb	Waste (\$5,110) (\$0.14)	Waste (\$5,110) (\$0.14)	Substance (\$4,343) (\$0.12)	Substance (\$4,343) (\$0.12)	Substance (\$4,343) (\$0.12)	Substance Return Boat (\$3,475) (\$0.10)		
PROCESING \$/lb Isotainer MARKET VALUE	(\$600) (\$0.02)	(\$9,198) (\$0.25) \$8,143	(\$5,578) (\$0.15) \$8,143	(\$5,476) (\$0.15) \$9,989	(\$5,476) (\$0.15) \$13,319	(\$5,476) (\$0.15) \$13,319		
yield&conc \$/lb	(\$5,710)	\$0.23 (\$6,165)	\$0.23 (\$1,780)	\$0.28 \$169	\$0.37 \$3,499	\$0.37 \$4,367		
\$/ID \$ / Gallon Advantage to Fuel	(\$0.16) (\$1.14)	(\$0.17) (\$1.23) (\$0.09)	(\$0.36) \$0.79	\$0.00 \$0.03 \$1.18	\$0.09 \$0.70 1.84	\$0.12 \$0.87 2.02		
Other Scenarios: •Waste Treatmen •Bottoms are use •Use/Reuse: tolu	t on Island (ed on site as iene filtered,	no US dispos fuel (no disp , BOL, no was	al costs and tran osal costs) stes	sport)	Return Si \$913,000 210 isota Toluene	PEC:) for iners of		

Tetrahyd	rofuran	Busin	ess Mo	del - Be	nefits T	able		
Terahydrofuran (THF) Recovered (<500 ppm H20) Feedstock 95%/5% Water	@25%water \$1.10 / lb \$0.10 / lb	(5000 gallons)						
	Waste / US	Manifast	Houst	n Bill of Lading (201)	Durante Dia a		
	Fuel Baseline Waste	Primary Distill Recovered Waste	Primary Distill Recovered Substance	Evap 5% Distill Recovered Substance	Evap 5% Distill Recovered Substance Return Boat	Evap 5% Distill Recovered Substance		
LOGISTICS \$/lb	(\$5,110) (\$0.14)	(\$5,110) (\$0.14)	(\$4,343) (\$0.12)	(\$4,343) (\$0.12)	(\$3,475) (\$0.10)	(\$400) (\$0.01)		
PROCESING \$//b Isotainer MARKET VALUE	(\$600) (\$0.02)	(\$11,704) (\$0.31) \$23,597	(\$9,415) (\$0.25) \$23,597	(\$11,766) (\$0.31) \$29,890	(\$11,766) (\$0.31) \$29,890	(\$11,766) (\$0.31) \$29,890		
yield&conc \$/lb		\$0.62	\$0.62	\$0.62	\$0.62	\$0.62		
NET RETURN \$/lb	(\$5,710) (\$0.16)	\$6,784 (\$0.17)	\$9,838 \$0.26	\$13,780 \$0.36	\$14,649 \$0.38	\$17,728 \$0.46		
\$ / Gallon Advantage to Fuel	(\$1.14)	\$1.36 \$0.21	\$1.97 \$0.83	\$2.76 \$1.61	\$2.93 1.79	\$3.54 \$2.40		
		E	vap/Distill	:				
With high costs of THF any recovery method does provide. Evan / Distill								
provides greatest return.								

I Oluene 36,192 Ibs (5000 gallons Recovered: \$0.30 / lb	5)			
SPEC: \$0.40 / Ib				
	Waste / US	- Manifest	Houston - Bill of	Lading (BOL)
		Primary	Primary	Prim/Seconda
	Fuel	Distill	Distill	Distill
	Waste Waste	Waste Waste	Substance	Substance
LOGISTICS	(\$5,110)	(\$5,110)	(\$4.343)	(\$4.34
\$/lb	(\$0.14)	(\$0.14)	(\$0.12)	(\$0.1
PROCESING	(\$600)	(\$9,198)	(\$5,578)	(\$5,47
\$/Ib	(\$0.02)	(\$0.25)	(\$0.15)	(\$0.1
Isotainer		¢0.440	¢0.440	¢0.00
yield&conc \$/Ib	-	\$0.23	\$0.23	\$9,90 \$0.2
NET RETURN	(\$5,710)	(\$6,165)	(\$1.780)	\$16
\$/Ib	(\$0.16)	(\$0.17)	(\$0.08)	\$0.0
\$ / Gallon	(\$1.14)	(\$1.23)	(\$0.36)	\$0.0
Advantage to Fuel		(\$0.09)	\$0.79	\$1.1
TOLUENE 100%				
16,477 kg / 5000 Gallons Isotainer KG material recovered	0		12,360	15,4
Manufacturing Credit MCO2 eq	112		-14.4	-
TOTAL Metric Ton CO2eq	113		14.6	-
Monufocuting Credit MMPTHs			06	4
Processing MMBTUs	370		-90	- 1.
Total Million BTUs	370		68	-65

TF Business N Terahydrofuran (THF) @2	10del - 5%water (5000	- Benef	its Tabl	le Worksh
Recovered (<500 ppm H20)	\$1.10 / lb			
Feedstock 95%/5% Water	\$0.10 / Ib			
	Weste / UC	Manifest	Houston Bill of	Lading (BOL)
	waste / US	Primary	Primary	Evap 5%
	Fuel	Distill	Distill	Distill
	Baseline	Recovered	Recovered	Recovered
	Waste	Waste	Substance	Substance
LOGISTICS	(\$5,110)	(\$5,110)	(\$4.343)	(\$4.343)
\$/lb	(\$0.14)	(\$0.14)	(\$0.12)	(\$0.12)
PROCESING	(\$600)	(\$11,704)	(\$9,415)	(\$11,766)
\$/lb	(\$0.02)	(\$0.31)	(\$0.25)	(\$0.31)
Isotainer MARKET VALUE		\$23 507	\$23 507	\$20,800
vield&conc \$/lb	-	\$0.62	\$0.62	\$0.62
jiolaaborio (jiib		00.02	\$0.0L	0.02
NET RETURN	(\$5,710)	\$6 784	\$9,838	\$13,780
\$/lb	(\$0.16)	(\$0.17)	\$0.26	\$0.36
\$ / Gallon	(\$1.14)	\$1.36	\$1.97	\$2.76
Advantage to Fuel	(\$1.14)	\$0.21	\$0.83	\$1.61
Tetrabydrofuran (THE) 25% H2O				
16.856 kg / 5000 Gallons Isotaine	r			
KG material recovered	0		9,481	12,010
Manufacturing Credit MCO2 og			-152	-194
Processing MCO2eg	66		8,6	11
TOTAL Metric Ton CO2eq	66		-144.4	-183
			440-	4 4 9 9
Manufacuting Credit MMBTUs	070		-1135	-1438
Processing WWBTUS	370		122	155

