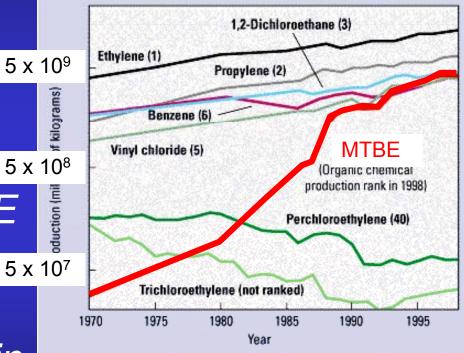
Priority Ranking of HPV Chemicals Based On Production, Persistence, & Chemical Properties

James F. Pankow, Julia E. Norman, William E. Asher Oregon Health & Science University Portland, Oregon December 12, 2006

research support: U.S. Geological Survey

BACKGROUND

- 70,000 to 100,000 chemicals currently in U.S. commerce;
 ~1,000 new chemicals are introduced every year;
- <u>2865</u> HPV Chemicals (>10⁶ lbs/y, excl. polymers, H_2SO_4 , etc.)
- <u>1749</u> HPVs if obvious mixtures are excluded (e.g., "petrol. distillates")
- Need for science-based strategy for ranking compounds.


USGS Interest

USGS "NAWQA" Program* (Natl. Water-Qual. Assessment) seeks comprehensive understanding of contaminant levels in natural waters of the US (e.g., VOCs, pesticides, PAHs, metals, etc.).

*Design of the National Water-Quality Assessment Program: Occurrence and Distribution of Water-Quality Conditions; U.S. Geological Survey Circular 1112.

A Cautionary Tale - MTBE

- 1973 commercial production begins in Italy for use as an octane enhancer (isobutylene + methanol = MTBE)
- 1979 EPA allows ARCO to 5× use up to 7% by volume MTBE as an octane enhancer 5×
- 1990 Federal Law passed requiring 2.7% by wt. oxygen in certain "CO non-attainment" areas

Johnson, Pankow, Bender, Price, Zogorski ES&T (2000)

MTBE Properties of Interest

physical properties...

- volatile
- very soluble in water (50,000 mg/L)
- soluble in precipation from atmosphere

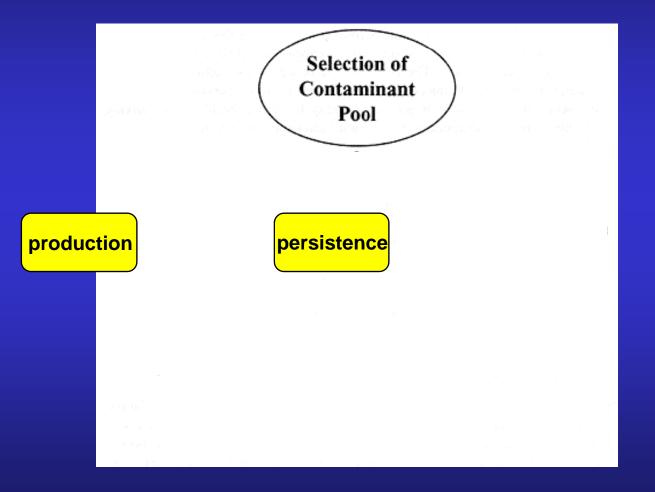
degradation...

- atmos. reaction with OH• radical <u>slow</u>
- chemical hydrolysis <u>slow</u>
- biodegradation <u>slow</u>

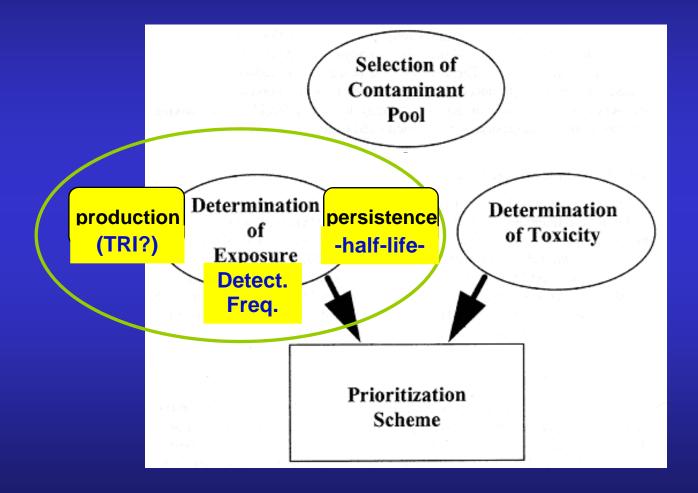
→ MTBE can get into water and remain there: detected in 7% of national aquifer samples taken by USGS in NAWQA program

see : http://pubs.usgs.gov/circ/circ1292/pdf/circular1292.pdf

Goal

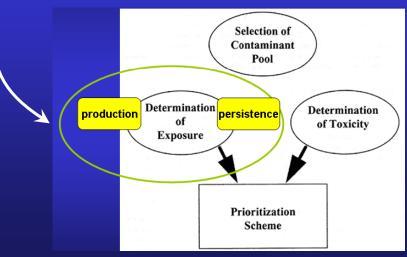

to help avoid scenarios like that experienced with: MTBE (persistent & water soluble) PCBs (persistent & lipid soluble) etc.

develop a simple flexible user-friendly tool for prioritization rankings of the HPV chemical list

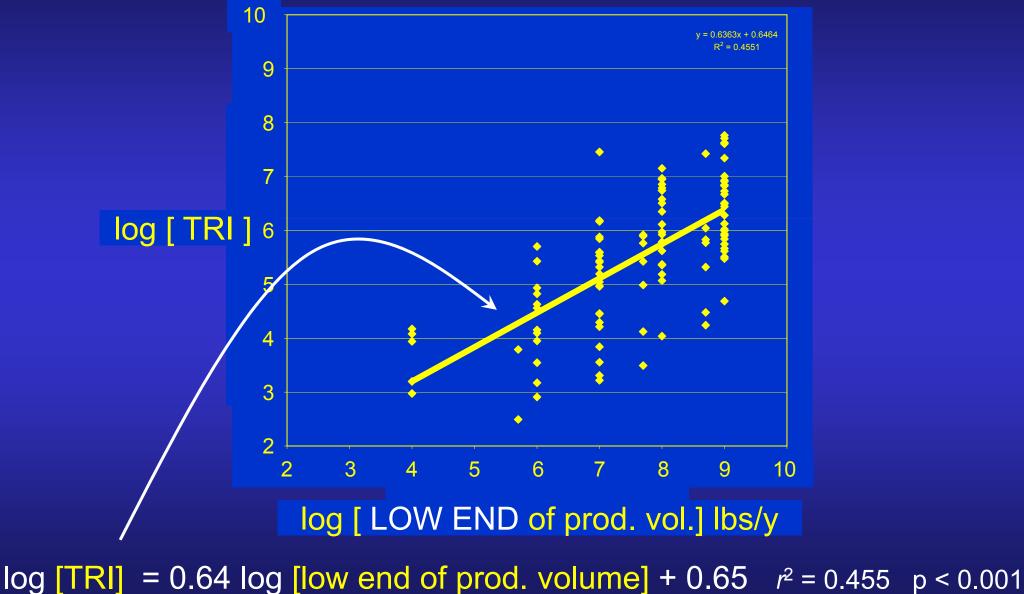

> "Chemical Prioritization System (CPS) Calculator"

Logic Elements of One Type of Prioritization Scheme

(Nat. Res. Council: Setting Priorities for Drinking Water Contaminants)



paradigm of EPA's Waste Minimization Prioritization Tool.1



Regression: Natl. USGS Data for 36 Compounds: log [Detect. Freq.] = $0.51 \log [TRI] + 0.57 \log [half life] - 4.72$ (r = 0.41, p = 0.00064)

✓ environ. exposure can be related to release & half-life

But, TRI Data Not Available for Most HPV Chemicals... Use production range data?

Conducts rankings based on user-chosen relations involving:

- log (low end of HPV production volume)
- BIOWIN degradability
- log Bioconcentration factor (log BCF)
- log K_{ow}
- log water solubility
- aquatic toxicity score (ECOSAR-based)
- •

Show Compounds								×
	Index	DB Index	CASNO	1. Biowin2 (Non	2. Biowin3 (Surv	3. Biodegradati	4. BCF	5. Li 📥
Formaldehyde	1	1	50000		3.1551	1.0000		0.5000
Urea	2		57136	0.89620	3.0665	1.0000	3.1620	0.5000
1,2-Propanediol	3			0.98470	3.3509	1.0000		0.5000
Benzenamine	4	4	62533	0.82900	2.8804	2.0000	3.1620	0.5000
Ethanol	5		64175	0.96990	3.2573	1.0000	3.1620	0.5000
Acetic acid	6	6	64197	0.94260	3.4311	1.0000	3.1620	0.5000
Methanol	7	7	67561	0.97520	3.2883	1.0000	3.1620	0.5000
2-Propanol	8	8	67630	0.96350	3.2263	1.0000	3.1620	0.5000
2-Propanone	9	9	67641	0.84950	3.0483	1.0000	3.1620	0.5000
1-Butanol	10	10	71363	0.99270	3.4937	1.0000	3.1620	0.5000
Benzene	11	11	71432	0.99990	2.4406	2.0000	8.7120	0.9400
Methane	12	12	74828	0.94160	3.1637	1.0000	1.3780	0.1400
Ethane	13	13	74840	0.92970	3.1327	1.0000	4.9400	0.6900
Ethene	14	14	74851	0.93150	3.1372	1.0000	1.4790	0.1700
Methane, chloro-	15	15	74873	0.60800	2.9144	2.0000	3.1620	0.5000
Methanethiol	16	16	74931	0.91100	3.0929	1.0000	3.1620	0.5000
Propane	17	17	74986	0.91550	3.1017	1.0000	13.100	1.1200
Ethene, chloro-	18	18	75014	0.56670	2.8879	2.0000	3.5480	0.5500 🖵
•								►
Histogram of Factor Sort by Name	Sort by DB In		oy CASNO scending escending	Sort by Factor	Goto Row Got		CASNO	Dialog

Setup Ranking Parameters

	Use	Weight	Fenceline	s Fencelin 📥	Use A
1. Biowin2 (Non-Linear Biodeg Probability)		1.0000	0	•	
2. Biowin3 (Survey Model - Ultimate Biodeg)		1.0000	0	•	
3. Biodegradation Score (1-3)	☑	1.0000	0	•	Clear
4. BCF		1.0000	0	•	с
5. Log BCF (est)		1.0000	0	•	
6. Log Kow (exp or est)		1.0000	0	•	
7. Log Kow (est)		1.0000	0	•	Set A
8. Est Water solubility at 25 deg C (mg L-1)		1.0000	0	•	1.00
9. Est log Water solubility (moles L-1)		1.0000	0	•	
10. Log Kow (exp or est)		1.0000	0	•	
11. Low end of Production Volume Range (lbs)		1.0000	0	•	
12. Log(Low End Prod Volume)	☑	0.50000	0	•	Upo
13. Aquatic Toxicty Score	☑	1.0000	0	•	
				-	Perf
				►	Ranking Co

Rank = 1.000*F(3) + 0.500*F(12) + 1.000*F(13)

Current Ranking Relation

Relation file: C:\0JP\PROJECTS\ACTIVE\USGS\Icrs\CPS_Calculator\hcv_conf.csv

Current ranking relation file

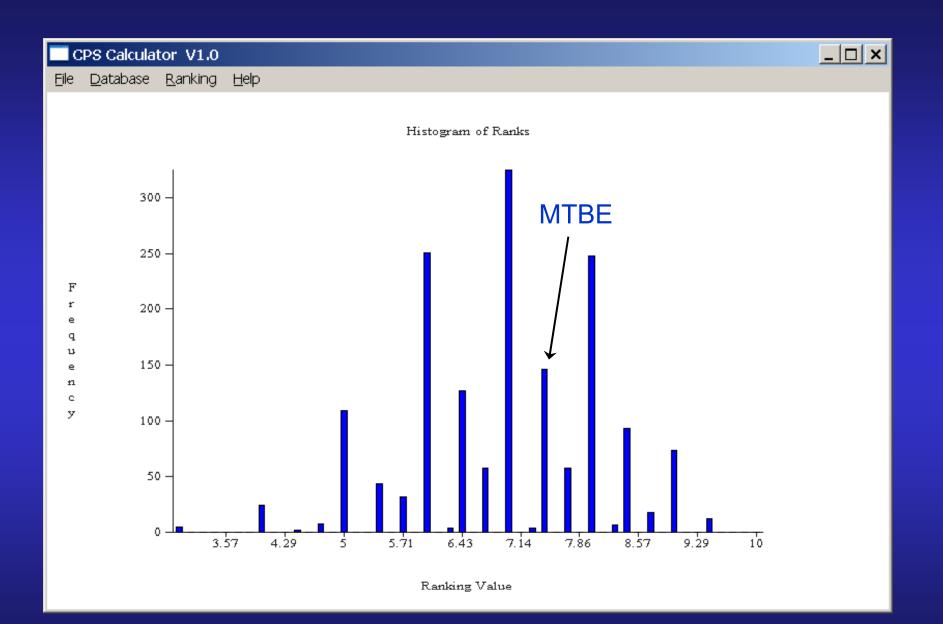
Load Relation Save Relation

Close

×

CPS Calculator V1.0

Eile Database Ranking Help


Top Ten Compounds

1. rank =	0.1000E+02	Phenol, 4,4'-(1-methylethylidene)bis 2,6-dibromo-
2. rank =	0.9849E+01	Benzene, 1,1'-oxybis 2,3,4,5,6-pentabromo-
3. rank =	0.9500E+01	Phenol, 4,4'-(1-methylethylidene)bis-
4. rank =	0.9500E+01	2-Propenenitrile
5. rank =	0.9500E+01	Cyclododecane, 1,2,5,6,9,10-hexabromo-
6. rank =	0.9500E+01	Benzene, 1,1'-oxybis-, pentabromo deriv.
7. rank =	0.9500E+01	Cyclopentene, hexachloro-
8. $rank =$	0.9500E+01	Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1)
9. $rank =$	0.9500E+01	Dinitrotoluene
10. rank =	0.9500E+01	Benzene, 1-chloro-4-(trichloromethyl)-

_ 🗆 🗙

rank = biodeg score (1 to 3) + 0.5 log (low end of production volume) + aquatic tox score (1 to 3)

MTBE is ranked 554 out of 1689

Conclusions

- for HPV chemicals, need more extensive TRI data, or actual production data (rather than ranges)
- simple ranking tools are needed for HPV chemicals
 → "CPS Calculator" will be one such tool
 - flexible user-friendly will allow use of any parameters of interest