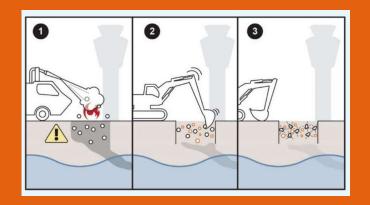
NEWMOA September 22, 2022

Soil stabilization

<u>_</u>©•\$9


http://pubs.acs.org/journal/acsodf

Field-Scale Demonstration of PFAS Leachability Following In Situ Soil Stabilization

Jeffrey T. McDonough,* Richard H. Anderson, Johnsie R. Lang, David Liles, Kasey Matteson, and Theresa Olechiw

Cite This: https://doi.org/10.1021/acsomega.1c04789

Read Online

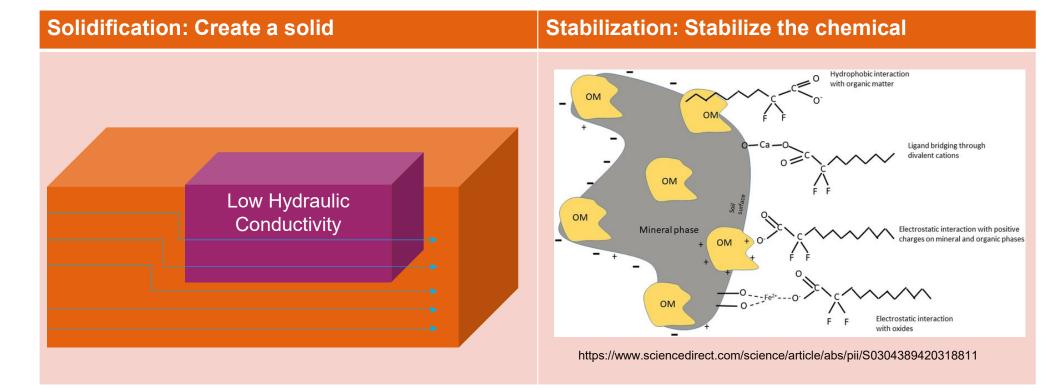
Johnsie R. Lang, PhD Johnsie.lang@arcadis.com

Agenda

- **1** Introduction to Soil Stabilization
- 2 Site Selection and Characterization
- 3 Bench Scale Treatability Testing
- 4 Field Scale Demonstration

History of Soil Stabilization and Solidification

ARCADIS


				Organic Contaminants	Inorganic Contaminants	Reactive Compounds
Late 1950s: First	1990s: Number one soil remedy	Current: Decreased use	Demonstrated	 Halogenated semi-volatiles Non- halogenated semi- and non- volatiles 	 Volatile metals Non-volatile metals Radioactive materials Inorganic corrosives and cyanides 	OxidizersReducers
developed for sludge management	in the U.S. Superfund (CERCLA) program	due to long-term effectiveness concerns and decline in remediation	Potential	 PCBs Pesticides Dioxins/Furans Organic cyanides Organic corrosives 		
			Ineffective	 Halogenated volatiles Non-Halogenated volatiles 		

https://pubs.acs.org/doi/10.1021/acs.est.9b04990

https://www.geoengineer.org/education/web-class-projects/cee-549-geoenvironmentalengineering-winter-2013/assignments/stabilization-solidification

Stabilization vs Solidification

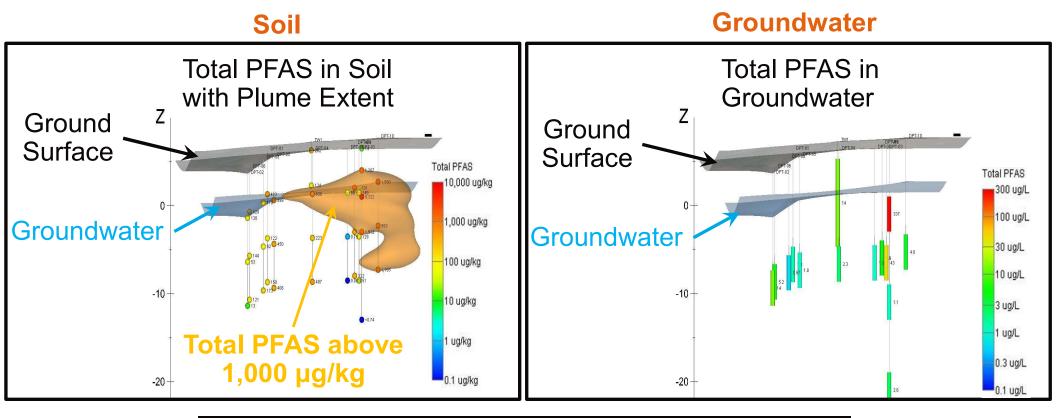
4

Project Objectives

© Arcadis 2020

Overall Objective: Establish an alternative to the typical PFAS source zone management practice of soil excavation/groundwater extraction followed by *ex situ* treatment

Three Specific Objectives:


- 1. Evaluate soil stabilization via chemical fixation as a remedy to reduce or eliminate leaching of PFAS to groundwater from source areas
- 2. Evaluate commercially available reagents (i.e., "fixants") for stabilization of PFAS in field scale test pits
- 3. Use of a sequential leaching procedure (Method 1315) to understand how soil stabilized test pit leachate will vary with time in PFAS concentrations

Site Selection and Characterization

Baseline Data

Collected in February 2018

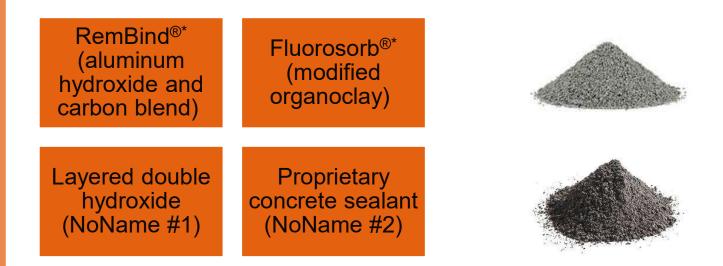
• Soil and groundwater samples collected from 10 locations

Soil stabilization mixing target depth interval: 5 – 15 ft bgs

Site Selection and Characterization

Ambient Depth to Groundwater = 5 feet

Fine to coarse sand, low total organic carbon (TOC)

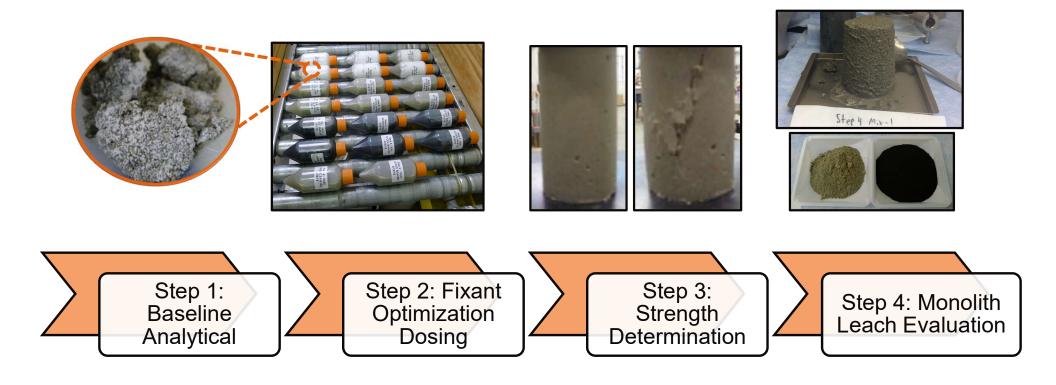

Max \sum PFAS Soil = 1,946 µg/kg Max \sum PFAS Groundwater = 43,262 µg/L

Max PFOS/PFOA Soil = 1,739 μg/kg Max PFOS/PFOA Groundwater = 24,040 μg/L

© Arcadis 2022

Bench Scale Treatability Testing

Bench-Scale Treatability Test **Objective:** To optimize fixant mixing rates and geotechnical performance



*Mention of RemBind® and FluoroSorb® is not an endorsement

© Arcadis 2020

Bench-Scale Treatability Test

ARCADIS

Bench-Scale Treatability Test Step 1: Baseline Analytical Theorical PFAS Maximums

48-hour bottle tests: Soil Mass = 88.4 grams Groundwater Volume = 200 mL

ARCADIS

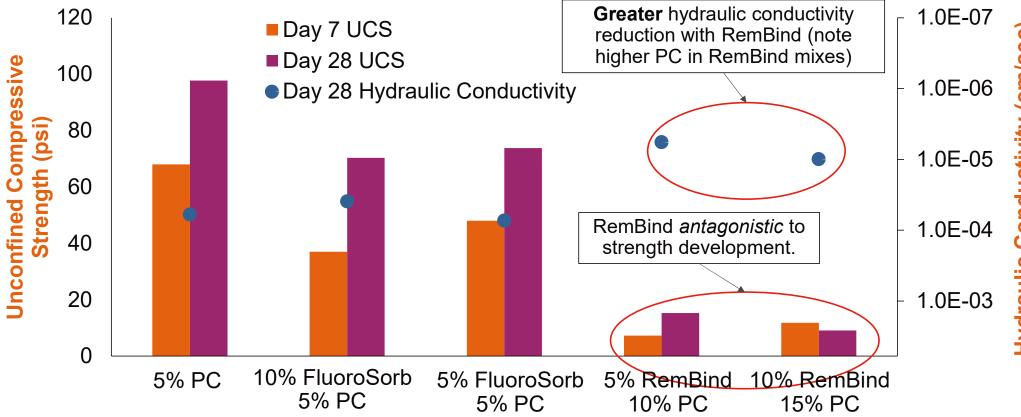
Final PFAS Mass (Control)

PFAA	GW (ng)	Soil (ng)
PFBA	15.7	
PFPeA	9.2	47.2
PFHxA	63.5	92.4
PFHpS	2.9	
PFOA	8.8	114.5
PFPeS	1.4	
PFHxS	46.8	789.4
PFHpS		
PFOS	90.9	2965.8
Total PFAA	239.2 4,2	4,009.3 248.5

© Arcadis 2021

Bench-Scale Treatability Test – Step 2: Fixant Optimization Dosing

Mass Percentages of Total Theoretical PFAS Leachability for Various Fixants at Associated Concentrations 100% 80% Ineffective Effective 60% \bullet 40% 20% 0% 5% NN2 20% FS 10% RB 10% FS 5% RB 20%RB 0.5% NN1 20% NN1 5% FS 5% NN1 Soil Only


- Layered double hydroxide (NN1 - NoName #1)
- Proprietary concrete sealant (NN2 -NoName #2)
- Fluorosorb^{®*} (FS modified organoclay)
- RemBind^{®*} (RB aluminum hydroxide and carbon blend)

© Arcadis 2021

Bench-Scale Treatability Test Step 3: Strength Determination

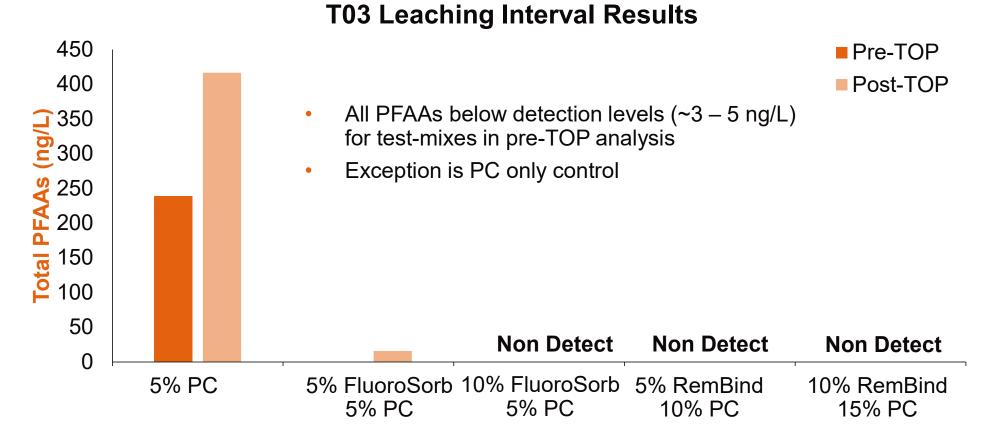
ARCADIS

UCS & Hydraulic Conductivity Results

Property of Arcadis, all rights reserved

Bench-Scale Treatability Test Step 4: Monolith Leach Evaluation

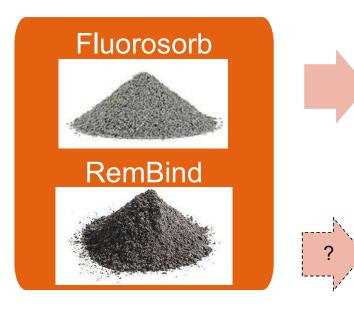
ARCADIS


- Leaching Environmental Assessment Framework (LEAF) Method 1315 at Test America Pittsburgh
- Monoliths immersed in fresh deionized water as leaching solution for each time intervals
- Leachate generated from intervals T03 and T09 submitted to SGS Axys for PFAS analysis by total oxidizable precursor (TOP) Assay.
- Both pre-TOP (MLA-110) and post-TOP (MLA-111) samples were analyzed.

1 Sample	n Leaching Intervals		Interval Duration	Interval Duration	Cumulative Leaching Time
	$\Delta t_2 \sim \Delta t_2$	Interval Label	(h)	(d)	(d)
or		T01	2.0 ± 0.25	233	0.08
Î A	$A_2 \dots A_n$	T02	23.0 ± 0.5	3 <u>735</u>	1.0
	n intrin	Т03	23.0 ± 0.5	<u>235</u>	2.0
Ų Ų	eluate e	T04	1 <u>1-11</u>	5.0 ± 0.1	7.0
		N T05	19. <u>19. 19.</u> 20. 21	7.0 ± 0.1	14.0
		nalytical T06	1977 - 20 20	14.0 ± 0.1	28.0
		T07	1000 (<u>1000</u>) 20	14.0 ± 0.1	42.0
		T08	197 <u>8</u>	7.0 ± 0.1	49.0
		Т09	1977 - 20 20	14.0 ± 0.1	63.0

SCHEDULE OF ELUATE RENEWALS

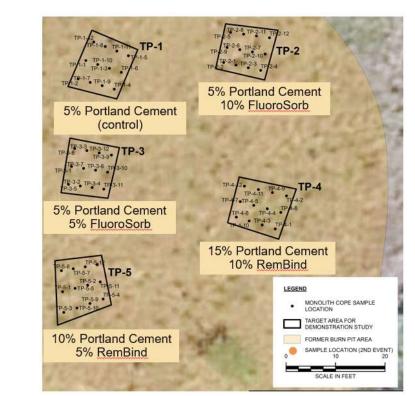
© Arcadis 2021


Bench-Scale Treatability Test Step 4: Monolith Leach Evaluation

© Arcadis 2021

Bench Scale Conclusions

Field Work (In-Situ Soil Stabilization)


Other Potential Applications:

- Ex-Situ Soil Stabilization
 - Biosolids Stabilization

Field Scale Demonstration

Field Implementation of Soil Mixing

- 5 test pits installed in July 2018
- 5 feet of overburden removed from each test pit. Mixing target depth interval was 5 15 ft bgs.
- Excavator was used to loosen the material to a depth of 15 ft bgs
- Fixants were measured and mixed with a bucket and rotary mixers while the necessary amount of water was added
- Plastic sheets were placed over the test pits while the fixant mixture dried out and hardened
- Site was graded with excess overburden soil
- 4 days total to stabilize the 5 test pits

© Arcadis 2021

Property of Arcadis, all rights reserved

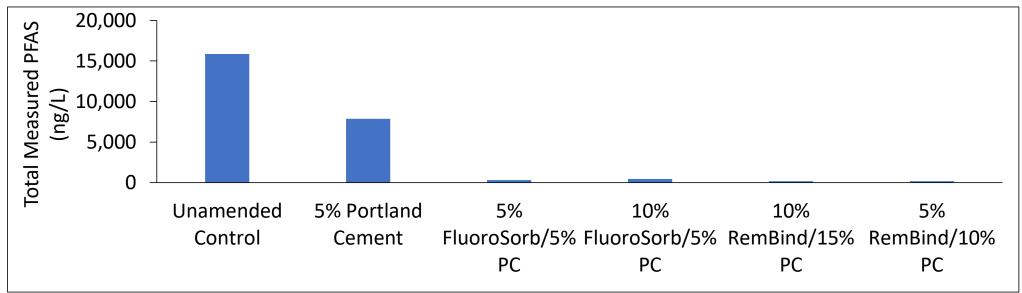
Field Implementation of Soil Mixing

ARCADIS

1st Sampling Event (5-months post stabilization)
2nd Sampling Event (12-months)
3rd Sampling Event (16-months)
4th Sampling Event (22-months)
5th Sampling Event (28-months)

FluoroSorb® Core

FluoroSorb® Core


RemBind[®] Core

RemBind[®] Core

© Arcadis 2021

Field Performance Monitoring (Method 1315 – T03 Leaching Interval) 28 months Post Stabilization

Long-term field-scale test pits - multiple orders of magnitude reduced leachability versus portland cement or unamended control

Negligible differences between FluoroSorb[®] and RemBind[®] at the 5% and 10% concentrations USEPA Method 1315 successfully used to evaluate time series leachability from test pits

© Arcadis 2021

Property of Arcadis, all rights reserved

ARCADIS

BAA 120

July 2018 - Soil Stabilization Implemented

December 2018 – 1st Sampling Event (5months post stabilization)

July 2019 – 2nd Sampling Event (12-months)

October 2019 – 3rd Sampling Event (16months)

April 2020 – 4th Sampling Event (22-months)

October 2020 – 5th Sampling Event (28-months)

August 2021 – BAA 120 Final Report

BAA 2105

February 2022 – Conducted Sampling Event (42-months)

January 2023 – Planned Sampling Event (54-months)

January 2024 – Planned Sampling Event (66 months)

Novel imaging methods - Establish location of PFAS in soil column relative to the fixants

In-Situ Stabilization Costing Tool

Important Input Parameters:

- Total volume/weight of soil to be stabilized
- Production rates (i.e. how much soil can be stabilized per day)
- Costs for stabilization agents

er Nam						Date							
	Input for general information	on		*If In Situ Soil Treatment	& Stabilizat	ion (ISS)/rest	ored area is abl	e to be capp	ed with no	offsite soil c	lisposal set	Bulkina vol	lume to 0
	Input for formulas			Cost for post excavation/I		. ,							
	Calculation				oo oampiin	garener							
	Drop Down		Drop d	own that does not match b	ased on in	outs (should l	he undated)						
			Drop u				oc uputicu)						
oject In	formation												
	Project Number												
	Project Name												
	Project Location					Operator	Туре	Max Cond	entration				
	PFAS Soil Waste Disposal	Locatio	n*	New Liverpool, Ohio	(Drop down)	Heritage Env	<i>i</i> i Incineration	None		Distance	100 miles		
te Spec	cifics												
	Perimeter			200	linear feet								
	Area			1000	sq feet								
	Depth			40	feet	Soil Type	Sand	(Drop down)					
	Volume (CY)			1481.48	CY	Soil Density	1.	.3	Handling	Volume	2962.96		
	Soil Weight (ton)			1925.93	ton	(adjust to ac	hieve average s	soil density)	(Handled	for removal	and replace	ement)	
	<u> </u>												
	Scenario (Order of Magnitu	ide Volu	ume)	1,000 to 10,000 cubic yards	(Drop down)	Shoring	eel Sheet Pile -7	'0' (Drop down)					
	*Use picklist to modify if so	enario i	s knowr	and adjust site specifics t	to be within	parameters.							
							ther Days						
	Schedule	Producti	ion Rate	Days	Weeks	(1 day	per 3 weeks)		Total Duratio	<u>n</u>			
	Mobilization / Site Preparation			1	1			Days	Weeks	Months			
	Excavation + Backfill	400	cy/day	7	2		2	14	4 3	0.80			
	ISS (Amendment+PC)	250	cy/day	10	3		2	17	7 4	0.90			
	ISS (Amendment)	250	cy/day	10	3		2	17	7 4	0.90			
	ISS (Portland Cement)	250	cy/day	10	3		2	17	7 4	0.90			
	Loadout/ Demobilization			2	1			Days	Weeks	Months			
	Site Restoration			2	1								
						Sampling							
9						Jamping				600	CY		
S	Bulking Volumo	150/		Volume assumed to requi	iro offeite d	cnocol	Wasto Charac				UI		
S	Bulking Volume	15%		Volume assumed to requi	ire offsite d	sposal	Waste Charac						
S	RemBind	5%		by weight	ire offsite d	sposal	Waste Charac Performance				CY		
S	RemBind FluoroSorb	5% 5%		by weight by weight	ire offsite d								
S	RemBind FluoroSorb Portland Cement (with oth	5% 5% 5%		by weight by weight by weight	ire offsite d	sposal Other	Performance	Monitoring		600	CY		
<u>S</u>	RemBind FluoroSorb	5% 5%		by weight by weight	ire offsite d		Performance I Utility Survey	Monitoring and Markou	t	600 3.00	CY days		
<u>S</u>	RemBind FluoroSorb Portland Cement (with oth	5% 5% 5%		by weight by weight by weight	ire offsite d		Performance	Monitoring and Markou	t	600 3.00	CY		

* Additional facilities may accept PFAS containing waste. Facilities locations are provided as an aid to determine distance to disposal facilities.

ARCADIS

Contact Information

Johnsie Lang (919) 980-1319 Johnsie.lang@arcadis.com

Article

http://pubs.acs.org/journal/acsodf

Field-Scale Demonstration of PFAS Leachability Following In Situ Soil Stabilization

0

Read Online

Jeffrey T. McDonough,* Richard H. Anderson, Johnsie R. Lang, David Liles, Kasey Matteson, and Theresa Olechiw

© Arcadis 2022